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Abstract 

Within the framework of general relativity, the gravitational scattering of two starsis con- 
sidered with regard to the gravitational radiation effects. The angular and frequency depen- 
dence of the generated gravitational radiation is investigated by Fourier's analysis of the 
gravitational field in the radiation zone. The results of the numerical calculations show a 
strong directional dependence of the radiation in the plane of movement of the stars. 

1. Introduction 

Though up to now the positive results of Weber's gravitational wave experi- 
ments (e.g., Weber, 1969, 1970, 1972) could not  be verified by other experi- 
mental groups (e.g., Tyson, 1973; Levine and Garwin, 1974), they have in- 
creased the interest in the general relativistic theory of gravitational radiation. 
The unfavorable energy balance of the experiments (rough estimations seem 
to indicate that per event an energy corresponding to the mass of the sun is 
radiated away) especially has been a main subject of theoretical investigations. 
Possibly the balance could be improved essentially if the radiation fields of 
the detected events show a strong directional dependence (footnote 1). 

Independently of the results of  the controversy about Weber's experiments, 
we believe that at the present state of theoretical investigation it is important 
to analyse and to understand in more detail the directional properties of the 
radiation fields generated by well defined sensible mass systems. In this paper 
we give a contribution to this program and discuss the gravitational scattering 
of two stars. 

"~ Modified excerpt from the thesis of Christoph Mache, Konstanz, 1972. 

1 Indeed recent works indicate that this directional dependence exists in case the 
radiating objects are in fast motion ("synchroton radiation") (Doreshkevich et al., 
1972; Misner etal., 1972; Fuchs, 1975). 
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In Section 2 we give a short introduction into the gravitational scattering 
process under the aspect of the occurring gravitational radiation damping. The 
gravitational energy radiated away, as calculated from pseudotensorial conser- 
vation laws in lowest approximation, may directly be translated into the loss 
of kinetic energy of the stars, a radiation damping effect, which at least in prin- 
ciple is observable. In Section 3 we summarize some aspects of the theory of 
gravitational radiation concerning Fourier's analysis of the radiation field. 

The calculations throughout this paper are performed with the Landau- 
Lifshitz energy-momentum-pseudotensor (Landau-Lifshitz, 1967). The energy 
concept in general relativity has always been subject to controversies. We do 
not intend to give a contribution to this problem in this paper. M1 our results 
would be completely the same if we used other known energy expressions of 
the gravitational field (e.g., Einstein, 1918; Rosen, 1940; Kohler, 1953; Isaac- 
son, 1968). 

The result of the numerical calculations are given in Section 4. A main 
result is the strong directional dependence of the radiation in the plane of 
movement of the stars. 

2. Gravitational Radiation Damping as a Loss o f  Kinetic Energy 

Regard the conservation laws valid for some (pseudo-tensorial) energy ex- 
pression tuv (e.g., the Landau-Lifshitz-pseudotensor) (footnote 2) 

0 
~x v ( ( - g ) ( T  uv + tuv)) = 0 (2.1) 

By application of Gauss' law and time integration over the whole scattering 
process one gets the integral balance equation 

~ 7  =" ( -g ) (T  44 + t 44) d3x = c dt  ( - g ) t 4~d fa  (2.2) 
t= - - ° °  t=--°~ F 

In (2.2) the surface F enclosing the volume V is assumed to lie in the radiation 
zone. 

The two basic assumptions under which our calculations are correct with 
sufficient accuracy are: 
(a) The occurring velocities v i (of the stars) are small compared with the velo- 

city of light c (low velocity assumption) 

vi 2 
C2 "~ 1 (2.3) 

(b) The gravitational interactions are weak (weak f ield assumption) 

2raG 
c2---- ~- "~ 1 (2.4) 

~- G r e e k  ind ices  r ange  and  sum over  1 , . . . ,  4,  l a t in  ind ices  over  1, 2, 3. S igna ture  is chosen  
to  be  - 2. T#V: ene rgy  t enso r  of  ma t t e r .  



GRAVITATIONAL RADIATION 403 

G: Newtons gravitational constant; m: mass of  a star; d: characteristic length, 
i.e., distance of  closest approach or radius of  the stars. 

As consequence of  (a) and (b) the radiation (reaction) of  the gravitational 
waves themselves, occurring in the rigorous theory because of the nonlinearity 
of  field equations, may be neglected. 

Under the assumptions (a) and (b) for calculations in the radiation zone the 
usual far-field approximation (see e.g., Landau and Lifshitz, 1967) may be ap- 
plied. The course of  the scattering process may roughly be described as follows 

m< m2 

~ e n e r g y  flux 

--F(radiotion zone) 

- t = 0  

Figure 1-The course of the gravitational scattering of two stars in a spacetime diagram. 

(see Figure 1): before and after the scattering the gravitational interactions be- 
tween the two stars vanish. After a sufficiently long time the radiation parts of  
the gravitational field are flown away through the surface F in the radiation 
zone. We emphasize that this simplified description is applicable because our 
calculations are restricted to the lowest order of  radiation damping effects, 
radiation reaction neglected. 

The two volume integrals on the left-hand side (2.2), the difference of  which 
we want to calculate, can in both cases be decomposed into two parts over V 1 , 
the volume surrounding m 1, and V 2, the volume surrounding rn 2, respectively. 

We assume both stars to have constant proper masses m 2, m2 and to be 
spherical symmetric (with constant radius) before and after the scattering pro- 
cess (spherical symmetry with respect to coordinates at rest relative to the 
stars). 

Now we regard the star m 1 before the scattering (for t -~ - ~o). Some ob- 
server in spacelike infinity" being at rest relative to the coordinates x a in which 
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we calculate (e.g., center of mass system) will observe the star moving with 
mfiform 3-velocity Vl (t = _oo). Transformation from the coordinates x a to 
coordinates x l  a being at rest relative to m 1 (before the scattering) is done by 
Lorentz-transfdrmation (velocity v 1 (t = _oo) between the two coordinate 
systems). After the scattering process we find a similar situation but possibly 
with another velocity v 1 (t = +oo). 

Now consider the difference of the two integrals over V 1 for t = _oo and 
+oo. If this difference is nonzero, the velocity of the star must have changed. 
For in case it would have not changed, the integrands in both integrals would 
be the same. Because of (a) and (b) the difference AE1 of the two integrals 
must be small compared with the value E1 of one of the integrals themselves 

AE1 

5, 
= :  

I V  ] t= +~ (._g)(T44 +/-44) daX 
t t---- -- ~o 

"~ t (2.5) 

The integrals E l ,  E1 may be decomposed into terms of different orders of 

magnitude with the dominant terms 

e l  e l  

v ' = ( t = -  ' 

respectively. The magnitude of the other terms is determined by the gravita- 
tional eigenfield of  the star and small compared with the dominant terms. 
Their contributions to the difference eXE1 are small compared with the contri- 
bution of the dominant terms. For m z  we can do corresponding considerations. 
For low velocities v holds 

t -  ~, 1 + - - - -  
2 c 2 

Hence from (2.2) we get finally 

m2 2 - oo AE = ? (va2(t = +~)  - v 1 2 ( t  = --~')) + -~- (v 2 ( t  - + ) - v 2 2 ( t  = - - ~ ) )  

(2.6) 

The velocities v i ( t  = +~) are the initial (final) velocities as measured by an 
observer in spacdike infinity. Therefore the total radiated energy AE is (in 
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lowest approximation) equal to the loss of  kinetic energy of  the stars and can 
be observed as a decrease of  velocities of  the stars. 

3. Fourier's Analysis o f  Gravitational Radiation Fields 

The spacetime is assumed to be asymptotically flat. There exist coordinates 
in which the metric guy becomes Minkowskian in the spacelike infinity. Further- 
more one can introduce coordinates obeying the (De-Donder) condition 

ax v = O, (hgV _ ½hrlUV) = ~uv, h = he,~rff (s (3.1) 

where in the far field zone the deviations h uu = guy _ rluv from the Minkowski 
metric ~uv are small. In the far field the outgoing gravitational waves may be 
regarded as being plane fronted over finite regions. In these finite regions one 
can introduce special De-Donder coordinates, in which the gravitational poten- 
tials h uu of  the plane fronted waves are (see e.g., Landau and Lifshitz, 1967) 

h 22 = - h  33, h 23 = h 32 (3.2) 

and h u~ = 0 in all other components (see footnote 3). The waves are traveling 
in the direction of  the x 1 -axis. The energy flux t °1 in the x 1 -direction as cal- 
culated with the Landau-Lifshitz pseudotensor t uv is 

16rrG -3t + ~ T ]  

As is well known and as may be verified by direct calculation from the 
pseudotensor t ~u the expression (3.3) for the energy-flux of  a (weak) plane 
wave is invariant under small (gauge) transformations within the group of  
coordinates satisfying the De-Donder condition (3.1). Furthermore t "v is 
invariant under linear transformations. This justifies that in our explicit calcu- 
lations in Section 4 we can use the Landau-Lifshitz far-field approximation in 
its usual form, i.e. in coordinates satisfying (3.1) but generally not (3.2). The 
numerical results below are independent of  the special choice of  coordinates. 

In the radiation field we make a Fourier's analysis of  the potentials h "v 

h"U(co) = f h uv exp (ic~t) dt  (3.4) 

Herewith we get as well the Fourier spectrum of  the first and further deriva- 
tives of  hUV 

~ ]  (~ )  = (--iw) n . hUb(co) (3.5) 

3 For simplicity in this chapter we use the special coordinates given by (3.2). Because of 
the bitinear structure of ffzv Fouriers' analysis in other coordinates is done analogously. 
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The harmonic spectrum of the energy flux is in analogy to electrodynamics 

~" 01(40) = ~ - -  -2-  (h22(40) - ~/33(40) + I -i40h:a(40)l 

(3.6) 

Integration over positive 40 and over a sphere in the radiation zone enclosing 
the radiating source region yields the totally radiated gravitational energy AE. 

Einstein's pseudotensor t 7 as well as the Isaacson stress-energy-tensor 
(Isaacson, 1968) and energy tensors derived from a theory of double measure 
in first approximation (Rosen, 1940; Kohler, 1953; Westpfahl, 1967) yield the 
same results. For the Einstein pseudotensor, which has the same invariance 
properties as mentioned above for tuv ,  the energy flux of a (weak) plane wave 
agrees with (3.3). In the other cases one easily shows the equality of the har- 
monic spectra with (3.6). 

We want to emphasize that the given Fourier's analysis of the energy flux in 
the radiation zone is valid in asymptotically flat spacetimes and i n d e p e n d e n t  

of the nature of the events which generate the gravitational waves. These events 
may be extreme relativistic or weak field interactions, as i n our example. 

We mention that the given Fourier's analysis of the radiation fields yields a 
measure for the effect of the radiation on Weber-type gravitational wave de- 
tectors, which for simplification we assume to be a linear harmonic oscillator 
(two masses coupled with a spring). It can be shown (Weber, 1962; Frehtand, 
1971 ; Papapetrou, 1972; Maugin, 1973) that the driving force K a for the 
oscillator is determined by the components R ~ b  4 of the Riemann-tensor R~v ~ 
of the gravitational field 

K a 
- -  = c 2 R ~ b 4 r  b (3.7) 
m 

where r b is the position vector with reference to the center of mass of the 
oscillator. In the radiation zone/'~b4(40) is according to (3.2) and (3.5) 
given by 

40 2 
/~b4(40) = - ~e2 h ab(40) (3.8) 

The energy flux t °l (09) is a measure for the excitation of the oscillator. In case 
the oscillator is oscillating vertical to the propagation direction of a circularly 
polarized gravitational wave the mean value K(40) of the spectral force density 
exciting the linear oscillator 

/~(40 ) 27r. 40 x/(G) 
- -  = / ~ .  X/(t  °1 (40)) (3 .9 )  

m c 

For linearly polarized waves the factor # varies between 1 and 0 according to 
the position of the oscillator. 
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4. Detailed Calculations and Numerical Results 

We assume the stars to move on Kepler hyperbolic orbits with eccentricities 
e > t. First we shall compute the angular distribution o f  the energy flux. From 
this result we then get the total energy loss by integration over all directions. 
Then we shall investigate the angular distribution o f  the harmonic spectrum of 
the energy flux and the total energy spectrum. 

The radial energy flux density q5 radiated from a localized system of masses 
moving in the x,  y-plane and calculated with the Landau-IAfshitz pseudotensor 
is in lowest approximation 

C 4 
= i1 11 

16~rG {¼4 I 4 ~  / 14( l - -cos2~o.s in20)2  + 

+ @1141~ 1124( - COS ~ .  sin ~ sin 2 0 + COS 3 ¢ sin 9 sin 4 O) + 

+ 1 ~ 1 1  - 2 2  - 2V 14v/ 141.-- cos 2 0 + cos 2 ~0 sin 2 ~0 sin 4 O) + 

,h i2  ,r,22 { + v 14~, 14t -  cos ~ sin ,; sin s O + cos ~ sin 3 ~ sin 4 O) + 

1.1,22 .n22 {1 :~q,' 14t? 14~,1 -- sin 2 ~0.sin 2 tg) 2) (4.1) 

In (4.1) the derivatives of  the gravitational potentials ~4~ are all expressed 
by ~b4 using the De-Donder condition (3.1). The gravitational potentials 
~ab are given by the far-field approximation (Landau and Lifshitz, 1967): 

2G 3~ c 
cab ~-~ J Poxax b d V  (4.2) 

c4Ro " 
V 

where R o is the distance from the radiating system and Po mass density. The 
equations o f  the orbit are: 

G(ma +m2)  (e 
x = - ch~) 

VO 

G(ml + m2)  (e z 1) 1/2 sh~ (4.3a) y =  -ff - 
Vo 

G(m, + m2)  
t - 3 (e.sh~ - ~) 

VO 

where ml ,  m2 are the masses o f  the stars, m their reduced mass, v o relative 
velocity before the scattering process and e the eccentricity of  the orbit which 
is defined by ( ; e = 1 + v04 

G2(m 1 + Lz)2 / (4.3b) 

p is the impact parameter. 
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We use the abbreviations 
+oo  

= n ( 4 . 4 )  

n cht - 

Then the total energy dE radiated into a solid angle d~2 in a direction deter- 
mined by the polar angles O, ¢ is (in the center of mass system) with (4.1)- 
(4.4) 

dE= ( ~cD dO .Ro2 da 
_ m 2 v o  7 

4 n c S ( m 1 + m 2 ) e V ( [ ! + ( 4 e - - 2 ) ! - ( 2 - - ~ ) f f  - 

(,2 e ~) ~9 ~ ~(~) _ 4 (e2 t)f+t_fi _e~J(e2 1)3f + ( e 2 _ t ) 4 f  - 
6 7 8 

- ( 9  0 ( e 2 - l ) S f ]  , ( l - c o s 2 ~ . s i n 2  0)2 + 

+(e2--1)[2f +(4)(e2-1)f --(602-16+t~)f +~(e2--1)f 6 - 

- - 7  < ~ - ~ f -  <e~-l~f+tl~t(~-~f 
~ ~ ~e°! 9 "  

• (--cos 2 0 + cos 2 ~p sin 2 ~p sin 4 O)+ 

+(e2- -1 )  4 f +  ( e 2 - - 1 ) f +  + ~ - ( e 2 - t ) f +  ( e g - 1 ) 2 f  - 
3 4 5 6 

(2e4 124~(e2-1)2f-(120}(e2-1)af+(~g)(e2-1)4f] ] 7 \ es / 8 

• (cos 2 0 + cos ~ ,p. sin 2 ~. sin 4 O) + 

+~e' 1,' [!_(2)!+(~ ~)!+(~+~)J+ 
+(3-- ~') S+(~0) (96) ] 

e 2 - 7  (e2-1) 7 ( e ~ - l ) ~ f -  (e~-~)'f  . 
7 8 9 

• ( 1  - -  s i n  2 ~ p .  s i n  2 0)2~ d~2 
J 

(4.5) 
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Integration of dE over a sphere yields the total energy ~ "  radiated away during 
the scattering process: 

2m2vo 7 [673e2+ 602 + 

2xE= 15CS(m I + m r )  [ 3(e 2 - 1) 3 (~5 - -  1~755 arc sin--+e 

(4.6) 

According to Section 2 AE is equal to the loss of  kinetic energy of the stars. 
(4.6) agrees with a result recently given by Hansen (1972) except that, upon 
repeating his calculations, we find a term 673 e z, where it also appears in the 
present cactulation, in place of  Hansen's 457 e 2. 

For values e ~ 1 (4.6) yields approximately with (4.3b) 

37 G 3 
- -  lr - -  . m 2 2 v o  (4.7) 2 x E ~ 1 5  p3 ml~ 

This result is in agreement to Peters (1970), who has discussed the gravitational 
scattering of a small mass passing a large mass for arbitrary velocities within a 
perturbational approach and straight uniform motion of the small mass as 
first approximation. 

The quantitative evaluation of (4.5) and (4.6) is given in Figures 2 and 3a, 
b ,c .  

f ( e )  l 

I01O- 

10 7 - 

10 ~ - 

10 

I t I 1 . . . . .  1,, , 

L._ 
I I I I I I 
1 2 ,~ 6 8 10 e 

Figure 2-Total loss of kinetic energy -z~" as a function of the eccentricity e. According 
to (4.6), -aXE is given by f i e )  through the relation -aXE = f i e ) .  ( 2 r n 2 v o T / 1 5 e S ( m l  + m2)). 
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The angular distribution of  the harmonic spectrum of the radiated energy 
is given by replacing in (4.1) the products of  the time derivatives of  the poten- 
tials ffab by the products of their Fourier-transformations in the following 
way (cf. (3.5)) 

l~la b 0 ,ttcci___+ 02217 ? (l~ab(g,~ ~ 
--~t " ~  " --rr _ e , ,  , _ , .  ~ca*(w))  

where 
q-c~ 

~aa(co) = f ~ab exp (ioot) d t  

and t~ ab* is the conjugate complex of  ~ a ~  From (4.1) we get for the energy 
loss per solid angle unit 

a l ~  ( ' o, ~,) = 

+ ½~ 11(0o) . ~22(0o) (_cos  2 0 + cos 2 ~ sin 2 ~o sin 4 O) + 

+ I ~12(c0)1 z (cos 2 0 + cos = ~ sin 2 ~p sin 4 O) + 

+ (~22(c0)) 2 (1 - sin 2 ~0 sin 2 0) 2 ] dco (4.8) 

The Fourier-transformations 0 f ~ 11, ~ 12, ~ z2 yield 

~l l ( co  ) = 4G2mlm2 1 (e I - l)  

 4.o o +( 11 - c h t  - 

~12(oo ) = 4G 2mira 2 
c 4 R o v o  

ff~) (e 2 -- 1) 

~ (e 2 - 1)2~ 
- [ l \ 2 J  exp 

t'h'-e)/ 
( i w ' ( e s h t  - t ) )  d t  (4.9a) 

• o3 -S f e 3 ~ - "  e4 2 
- ~ ht  - ht  - 

+ ( ~ ) } e 2 ~ $ t e x p ( i o o ' ( e s h t - t ) ) d t  (4.9b) 
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t 4G2rnlrn2- 2 1) f 1 e3 I- 

_ .  

(~4) (e2 - 1 ) ~ e  x 
+ ~2--~)--~- ) p (iw'(esht - t))dt (4.9c) 

with the dimensionless "frequency" 

c~ .G .(rn 1 + m2) (4.9d) r 
CO = VO 3 

The numerical evaluation of these integrals gives according to (4.8) the angular 
distribution of the harmonic spectrum of the radiated energy. The quantitative 
results are shown in Figures 4 and 5. The radiation in direction of the z-axis is 
stronger in at least one order of magnitude than in the plane of movement for 
the harmonic spectrum as well as for the totally radiated energy. 

The spectrum of total energy is given by integration of (4.8) over the total 
solid angle: 

c 3 R 0 2 ¢ o  2 
d U ( ~ )  - - -  

3@rG 
• { [ ~ 1 1 @ 0 ) [ 2 - - -  ~ 1 1 ( ¢ 0 ) ~ 2 2 ( ¢ 0 )  + 

+ 3[~12(co)[ 2 + [~22(w)12} dco (4.10) 

The spectrum is shown in Figure 6 for different eccentricities e. The fact that 
for all eccentricities the energy distribution E(w') reaches a maximum (at 

# 
co' =cOm, ax) makes possible the definition of a characteristic collision time te. 
From COmax, which is to be taken from Figure 6, we get COma x 

27r ~_.'ma~ v 3 
C~m~"x tc G(ml + m2) o 

and hence 

2~ G(ml +m2) 
tc = , (4.1t) 

Ogma x Vo 3 

We mention that a characteristic collision time might also be determined from 
the time-course of the totally radiated power/~. E can be calculated by inte- 
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a) 

9 0  o 

q~ 

b) 

Figure 4 -Angula r  distribution of  radiated energy for different values of  co' in the x, 
y-plane (arbitrary units). The harmonic frequency co is given by co = to'vo3/G(ml + m2) 
(a) eccentricity e = 1"0t (b) eccentricity e = 1"51. 



414 CHRISTOPH MACHE AND ECKART FREHLAND 

- - ~ 0  

34 0 9 

~109 

f)=lO o 

P=20 ° 
)=30 o 

Figure 5-Directional dependence of the radiated energy at to' = 0-1 in different 
meridianal planes. For other frequencies to' the qualitative shape is similar. 

gration of  (4.1) over the total solid angle or using the well known formula for 
quadrupole radiation (see Landau and Lifshitz, 1967). Indeed quantitative cal- 
culations of  the half-life time of  E yield agreement with tc within a factor < 2. 

5. Discussion 

The results for the total radiated energy presented in Figure 2 and (4.6) 
include the interesting case of  gravitational capture of  the stars due to gravi- 
tational radiation damping (2AE/rnvo 2 > 1). In this case the generated double 
star system continues to radiate and the total radiated energy increases. 

Figures 3a and 5 show that the principal part of  energy is radiated in a 
direction normal to the plane of  movement. On the other hand, according to 
Figure 3c, the radiation within the plane of  movement is strongly dependent on 
the eccentricity e. For great eccentricities e >> 1 (i.e., nearly straight-lined 
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I I I I I I I I  I 

10 a 
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I I llIlll I I I llili 

10 5 a)' ~- 

Figure 6-Harmonic spectrum of the total energy loss for different eccentricities e as a 
function of co'. The total energy loss - d E i n  the interval [co', co' + dco'] is given by - d E  
= f(e, co') (8Gm2vo4/15r~2e s) dco'. 

orbits of the stars) the principal part is radiated in the direction of movement of 
the stars. This directional dependence indicates the possibility of improvement 
of the energy balance mentioned in the introduction. But naturally an energy 
flux (on earth) of 104 erg/sec cm 2, as required by Weber's experiments, can- 
not be reached under the assumptions (2.3) and (2.4) of low velocities and 
weak fields. If we assume two neutron stars with sun masses moving in the 
galactic center with an intrinsic relative velocity of 107 cm/sec and a minimum 
distance of 4 .106  cm, the maximum energy flux on earth is at least 5 orders 
of magnitude too small in case the plane of movement lies in the galactic plane. 
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